

## dCas9 (D10A & H840A)

### Cat# PR-137213

| Background            | The functions of CRISPR (Clustered Regularly Interspaced Short<br>Palindromic Repeats) and CRISPR-associated (Cas) genes are essential in<br>adaptive immunity in select bacteria and archaea. CRISPR uses a Cas9<br>protein to recognize DNA sequences, with target specificity solely<br>determined by a small guide (sg) RNA and a protospacer adjacent motif<br>(PAM) upon binding to target DNA, the Cas9-sgRNA complex generates a<br>DNA double-stranded break. Based on this RNA- guided nuclease activity,<br>CRISPR has been showed to be a powerful tool in editing the genomes of a<br>broad range of organisms. Furthermore, a repurposed, nuclease-<br>deactivated Cas9 (dCas9) protein has been used to regulate endogenous<br>gene expression and labeling of genomic loci in living and fixed cells. |  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Size                  | 50 μg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Concentration         | Powder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Source                | E. coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Sequence              | Mutated CRISPR-associated endonuclease Cas9 (amino acids 1 to 1368) with<br>D10A & H840A (ACCESSION: AKS40378 for Cas9). To facilitate nuclear entry,<br>two nuclear localization signal sequence (NLS) are fused to both N- and C-<br>terminal of dCas9 protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Appearance            | Lyophilized powder.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Formulation           | Recombinant dCas9 (D10A & H840A) protein expressed in E. coli supplied in<br>powder. Please add buffer of 10 mM Tris-HCl (pH 7.4), 0.1 mM EDTA, 1<br>mM DTT, 150 mM NaCl, and 50% (v/v) Glycerol to volume of 200 uL to<br>allow > 20 min to dissolve, and mix well by inverting the tube 6-8 times.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Storage and Stability | Recombinant dCas9 (D10A & H840A) protein in solution is temperature<br>sensitive and must been stored at -20°C or below to prevent degradation.<br>Avoid repeated freeze /thaw cycles and keep on ice when not in storage.<br>Stable for 1 year from the date of shipping when stored and handled<br>properly.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Application           | Recombinant dCas9 (D10A & H840A) protein is suitable for use in imaging of genomic oci in living cells and fixed cells as well as for gene expression regulation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |

Tel: (617) 238-1396, Fax (617) 380-0053 E-mail: info@novateinbio.com, Website: www.novateinbio.com

### Protocol

# The protocol listed below is for reference only. The user may optimize the protocol according to their own experiments.

### **RNP** Complex Formation

Gently mix the reaction and incubate at room temperature for 10 minutes. Then place on ice for following transfection by electroporation or liposome, or incubate with permeabilized cells.

| Components                         | Volume    | Final Concentration |
|------------------------------------|-----------|---------------------|
| sgRNA (1000 nM)                    | 1.2<br>μl | ~120 nM             |
| Cas9 Nuclease Protein<br>(1000 nM) | 1.2 μl    | ~120 nM             |
| Opti-MEM                           | 12.6 µl   | -                   |
| Total                              | 15 μl     |                     |

#### References

1. Deactivated CRISPR Associated Protein 9 for Minor-Allele Enrichment in Cell-Free DNA Amin Aalipour et al. **Clinical Chemistry** 2018 Vol. 64, Issue 2 p307-p916

2. Purified Cas9 Fusion Proteins for Advanced Genome Manipulation Jovan Mircetic et al. Small Methods 2017 1, 1600052

3. Disruptive non-disruptive applications of CRISPR/Cas9 Jonathan LSchmid-Burgk **Current Opinion in Biotechnology** December 2017, Volume 48 Pages 203-209

4. Efficient sequence-specific isolation of DNA fragments and chromatin by in vitro enChIP technology using recombinant CRISPR ribonucleoproteins Toshitsugu Fujita et al. **Genes to Cells** Volume 21, Issue 4 April 2016 Pages 370–377

5. High-throughput biochemical profiling reveals sequence determinants of dCas9 off-target binding and unbinding Evan A Boyle et al. **PNAS**2017 May, 114 (21) 5461-5466

6.CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells Wulan Deng et al. **PNAS** 2015 vol. 112 | no. 38 p11870-1187